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SINGULAR VALVE DECOMPOSITIONS,
ETL6ENVALVE DE(OMPOSITLONS, AND
THELR RELATIONSHIP TO PCA

SUMM ARY:

Across ditferent branches of -omic Studies, Prinipal component
analysis is a common tedinigue used in both ?,Mnh'i-f contro|

and exploratory data analysis” 1o stydy features of Fomic dat
relative o Samples and phenotypes. Because -omyc dodnges o i
ar 1afQR and often substantially difker in rowW dand column dimen-
sions, interesting mathematics mukt be exploited by PA Algorithms.

Further, many popular PCA algofithmg produce different outputs for
estimates of loadings, PC scores, and ergenvalyess.

e s 46—‘-0“.“ some mathematical framework that connects the con-
ceprs of PCA and SVD. This document, while primarily a mathematic|
text, coters to individuals with o math or a stats chkerMnA ol
ah advanced undergraduate +o graduate leyel.
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Section 1. Some HOUSQKQQP‘V\S’ I_n-\-"oéqc{.fong, and &
grief overview of what We Will Learn in These Notes

#1.|Principal componeny analysis (PCA) 'S centralized
around & special case of a singular value decomposition
(sVD) of a makfix Knxg- Simply put, an Sup of & watrix
is gust a WAy 4o write a matriX jn jerms of severa |
ofher matrites. ont reason that we are interegted in
finding the SVD of & madrix 1S +hat an SVYD can reveal
cluq\i-\qi-ive information aboud this mainX. SVD's art
alst important in the Gle‘ld of numerical knear algebra
as they can be exploited +to _Chdhze the com‘)qi—a\{—;bno‘f
complexity of certain algefithms.

#2.|S4ppose you have a matrix full of dafa - we Wil
cal this matrix XK.

we can observe +he -Followih3 three casesS for dimenssons
of X:

A Nn>9 (nrows > hCOIS) .o here
se
X 17'\ (nCO\S > thNS) *-f ;:\u.n ';‘M“f.-"\
1ac9ef than
. Nnfons = Nnceols
g n:q (nfens ) ! .

¥ v
In -omic datasets (and 'n Dig data inoeheral) 4
iS Lommoh 10 work in (aSes Whfe N72q or gqIrNn



(in other words, the dimensSions greately q4if{er).

Further,

Tn PCA our data malriX X is viewed asS o reql-
yatued wmoatnx  insiead of randowm Variables. Here
I will hote that we are using Xwxq (the stats
makfiX hotafion conventioh) nstead of Anxm (the
moth matrix notation (onvention). This meang thal
when we 4alk about independ thee and dependence
of the Yows and columns of Xy, throughout this
dotument , wWe are feferiing 1o Jingar independe Nce
and linear dependence (not probablistic .‘ndepehdente)
dgpendence).

#3.|In PCA, the Ciqenvalues oand eigenvectors of
are of keen interest to us. Moreovgr, qigéenvalyes
and ¢igenieciors are essential 0 the analys's of
linear " +rans formaiions. Coming from the German
ord “eiaen? meanin “Characterystic", eiqenvalues
ond eigenvector (on@ we exiract them usjng some
mathematical or cgmr\kia\}ionq\ \'Cchniq,ue) ten us
+hings abouj the Characteristics " of the matnX-

#4.] when you use eigenvalue calculadors (or various
fanckiohs Yo do PCATI ke ‘preomp() and *P(ACY in
R), You might hot always Qqet €xddly the same
ancwers or aPproximations. While we won'{ fotus
direckly on the algorithms and grocesses used to
enerqie €iglnialues or eioenvectors, itvs important
o note +hat net all matfices work well or arg
compatible with evtry algordhm.




For moSt matrices (especiall V\°h"51(uaf€ ones) i

iS hmtd/cow\f\k+«¥ionqllt1 com t‘ex to find €igenyalyes
and eiaenyectors, even wWith o gréat o4~ of

algorithims - I you are infere sted, “there is a ©nept
i numerica| linetar algebra called +he Condition
nwber which is the vatio of he Lqr:)e?\ +o
gmallest eigenvalve . When the smallest €rgenvaiye of
a makrix is equal to z&ro, the condition number is
-'h{;‘-hi_\,y stondard eiqenva lue solvers are || - (Ohéwl-.oned
and unieiable- Tieraijve methods to approximate
+hese yalues are fantastic hese days, but Can
skl fail When you have One or many Zere or
hearly zero Cigenval4es.

Section 2 = Singular value Decomposition (svp)

we will introduce this fact about +he qeometric
infecpretation of a matrix and et i+ Sit for

a minute- &S 1t might be new o some f{olKkS.

FACT | Any nxq matrix X +transforms +he wunit
circle in W\q’ into an e.\h'fSo{A in R"

xe g™t

R—

Wnit \:‘:\ll : (

ek deformed wni}
ball ynto ellipse
whder action of




This {s ohe way 1o conceptuajize what a matrix (s.

To further illuminate WhQ“' this meansS n an
alqebraic  way (rather than geometric) , we wil)
be consu!cﬂ"; the Followms ‘hree CasS n these noles:

fcase 1:when nve
k case 2: Whén g n

% case 3: when heq
Bat first , we will reviewW Seme linear qlsebro\

Section 2, -1 : Linear Algebra Review

A loose definition of Vinear dependence: It you can
express two columns  (of ©OWsY jand kK in 'a matrix

~C like So:

R(..:‘ FX,. KT
[ : c *

L‘h\,,'h IL‘*MKJ

—_ L_l

JL Scalafl kY column
column

=) J— Olumn S hLin. d€p~ with kﬂ‘ wlumn

Now recall +he concept of vank:
ol s of
(‘M\K(X\ = dim (s?amc}.c m;\é\ %)

~ divn (Squlrov;cs of%)



where Fhe dimension of the Span of the

(O MAS s {he  paxmal hamber of lintarly
independent coumns of X

THM ]I wWill not prove this here, but you can
gird proofs of +his Tr books of online:

column vank (X\ - fow rank (X)

Thinkina batk Yo linear 0\|3£\>ro\, remember
performing row redutiion ofp & wmafrix where ni
o\ndlor ‘hat had rlhﬁ“"]l.l d(PQNQVH’ YyowsS or COlMMnS
and Yyou end up 9qttting Zero veckors \when in
ceduced row echelon “form... +his is a time where

oy May or May hot have discussed this |
\{ewrosis, just hoid onto this Cfear s oo For our

A" nxq matrix X s said +o have full rank
& 13s rank ecLuqls the lquesl, posSible rank for
a moriiX of nxq-

Recall that rank (X)) £ min (n,q) this is tme for
any Marnx thl\-

=5 A matrix X is full rank wheh

cank () = min(n,q) (%)

DEF] A nxq wmaktrix X ;4 Said ‘o be fank
qebicient f rank (x) < min(".q)




gection L.2: Back to SyD

xe g™t

L J

Wnit ball : '

in RV
defo med Wh H.

ball into ellipse
Whder action of X

TERMINOLOGY/DEFLNITIONS

DEF |The principal axes of the elipsord are denoted by w;
their leng¥hs which are denoted by 8;
2 0; .Tin total, there are N principal

and can pe ordered by
st for izl ,n , ¥
0nYes.

- -
DEF | The preimages of each uj are denoted by V7. Tn total
there are q Preimmscs- ’

THEORUM :

E-w—i\r ot prove this here, bat 11 has been shown.

. > o .
THm] The principal axes $®i,..., Wad and the preimages
1?”.",?.,‘-" ace orthonormal.

Length= 1 (by definition) , any they all
meek af right ahgles



TO UNDERSTAND WHAT THIS MEANS  WE WILL
FLRST GEOMETRICALLY SHow THe THREE
POSSIBILITIES:

For the Sake of +hi e ore noina o
assume all of ¢h is illustration, W ,

¢ vows | ré Whexr|
inde pendent (olumns o X @ 7

CASE 1: when n79
”

statement: X mapS +he wuni} ci . a2
ewipse in &3 t nt circle in R* 4o an

preimage

1T Xegm

X (Knear mapping)
— — /—\

In Case 1, there is g third

rincipal oXis
&, (in %reen) thal is orthoyma) to the othts

2 VRtors \A and U\, However &, (consian}) = 0\

therefore, the third principal axis Uq isstiftled
by ¥3,20 nto the Eero vector



CASE ) : when g7n
| 3

fote ment: mapS +he ) i §
%,ui?se '?n 335 " Ui sphere in R 4o an

preimag e

’\ vectors 3 ¥ "1’

K o
T X ef T

(Knear mapping) s
A---)r'*?—) /‘\ — \
549
¥ \\ v
N

In 4his case Where we are mappin
.c(oma\ h\%hel" o a lower dlMtnswj
OWY vector 7 Map S 40 +he null szC -
oNnd our matrx ‘_)C_ +akeS WS from

2D 40 2AD.



CASE 3: when h=9

R“L

This case S more s\—rmish{--(-‘orwdfcl
(‘lg‘ﬂh--- for  ¢his illusivq{-fon, we assumed
all of our vectors in X were lintarl
independtnt. peopndence just tactk S on additional
VECtor ynapping to null Space n ANY Case)

Note: There qre many WANS 4p yndersiand Whad o
MY iS.. +his idea 'S 01€ of jhem (x MapPPing
of uni} bqll in R 4o e\lipsaié " IR") This way iS {he
key \NM‘ +o uy\aers}qmihs“’he Math of S\lD‘é



gection 2.3 : The Core Idea of SVD

we're 50"\3 4o Pose some dﬁcim’-l-\'ons for MQ'h’ICQS

Let = rvank (X) where XeR™Y

\(Shckm the vectors v and u; into the
colums of - matrices V' and O

I+ hotds +hot

Xi/—_,i\\l,é (%)

gy @er) ey )

We Call (*) t+he veduced Sihgv«(qr value
decompoSition of X.

NoW WE WILL DEFLNE THE FOLLOWING
CONCEPT:

3
DEF| The ui:n matrices U and V are sa/d 4o be
W hi' oxr\' (
; In other Words
iU : U’ v:-v' =V Vi=L
Vi:=V'

¥ the decmahoh of aunitary js Sl. h‘H s&,(,h.} when W haw
Comnp leX #smmve&, but Iour $4Al-ls+nca wofk? +his doesm‘

matie r!




KEY TVEA:

Tl'\Q “-qul" S\ID iS Ob{‘ﬁihecl b\’ “C°YVI|>|QHh5”
‘6’ and '{T into unihr\1 lnj\C\'l’\'i(.QS‘ Vand
and padding Z with 0's if newssary :

XV, -z, 9
"Xq qxq  hxn nXq

To understand wWhat we mean b\{ this, we need 4o
consider +he three cases qbove AND we hted
to understand 2 ideas of what's ¢oing on °

some of the vectors in T S and U mus
be furned into zero vectors (Jgpendl'hs on the
cose and rank)

@Algon’%hms (like the Graham-Schmidt process)
must be used o obtain xedors Oofthonormal 4o
the other vedors inSide V and U (or ¥ and U)
reiftd""“" (depending on the case and rank)

we will Gllustrate this in 4he eyt seckioh.

Mgebraically (and computationally) this forp, of the
S\D is mort appealing because U and 7 are Square’



Section 2.4 : The Core Tdea of SVD (Expanded)

Recall from the dl"’*%""‘"f‘. reqard(ess of of X's dimensons
We always have g prtimaqes and n principal axes...’

M05'|' SND O\‘QO(I'H\MS -‘-‘acqs on obtainin V', ahd *‘hfn
moreover, the obtain & Shough o )

) S e B )
X =0 w2 W= X W
o.

ACKNOWLEDGEMENT S : These matriy  skefches below ré inspired bt|+he arficle " How are Pr\'r\ciPo\\
component a nayysis ‘"‘.A singular value de“’MPOﬂHOn el ted 7" b‘1 Andre Peru nicic at +the
following Wwnk . https://intoli.com/blog/pca-and-svd/

CASE 1: When h»>9

Case 1A: wWith r=q (ull ro.hk‘

(x)
—
s n =
’?S% Qx4 S '}31, QX9
X V = U Z
nxl‘ qxq hXn nxq’

’\
Eirst, hotice that V= V when r= .
no linearly Aegehdenk colamns) Q9 (e, there art



second, notice that this, right away means that (f
ouv algorithm can gind us §, it can findus T

Third, look ot (%)

This blue rectangle in the complett Mmatrix U cendains
additional vectors that are orthgepal to the yeciors in
7. These veckors can be obtained +hrough a method
like the Gmham-Schmidt fvocess

K For comrq-!nl-‘nov\q\ urposesS, Sometimes alqorithmg
require that these (R; vectors in TJ and not ‘6’ My s{
be obtained (17 is desirable becayse it is Square!)

% 6enerally  bthind the scenes, we might care
about all of «r

VISUALIZ ATLON : X e R¥™?*

Statement: X mapS +he wuni} cj . 2
elipse in g3 ¥ ' ocircle in R 4o an

preimage

vectors 3
L1 X R
y v (near mappina)
— — /"\
?\ahﬁ in @3
(e elipst

is o Yhi'§
f\mh&\




case 18: With < q ( rank deticien-l-\

A .(‘T i
X v - nxe cxXe ]
nxe_ e .. .20
X v _ T, s
" o nxq

A

when r<q o in U we dont have Several
columns due to linear da?endenu’.

CASE 2 : When g4 =n

cace 24: with rz=n  (full rank)

(xX)
—
A A
p \'\’, ) U S
"Xy = nxn nxn
1xn
Zero

vectors




X V
" 99 nxn

-
\Y

hK1’

N
First, notice +hat U=U  nwhen ran (ie. there arg
no linearly dependent colamns). HOWEYERN! T¢ an
alaorithm Mmust S'\'&f‘\' with o Comrlefe V and hota
comprete U (e it ant find vectors' (xx) +hat
are oH-hohorm«ﬁ fo vectors in ) ,then it Wil fail.

vectors in (XX) are not of interesd  4p sratisticrans
but they are cOme“‘Q‘\‘I'Oht\l\\, hecessary ak times.’

2%
VISUALIZATION : XeR "

fotement: mupS +he ) i 3
%,ui\‘Se in If?g ! unit sphere in R° 4o an

prei mag

"\ vectors " .‘2
a‘z haal
T a A‘Lx Xefk T .
(Y (inear mapping) 5 » O,
LA E—? — —
§ \/’\
\ \
i \ !

|



Looking a} the blue rectangle in V (correspondfhﬂ
Lo +he “columns in V), we can see how some
columns are forced into +the null space. Note
here that veckors in the hall space wapped 4o
the zero vector (& lack of that Jimensiony, they
are not equal Yo the zero vector after beinj
multiplied by Some tons tant.

Like in Case 1, +hose Q". 's are oanonormm Yo
Hhe other V:'s oufside of +he nullspace offer
this linear }mns formalion - we aré Simpl not
interested in them (arthough they wmight be

used in dlqonthims and Lehind the scehes of our
woT K)-

we can also see thisin the 2,‘,“1 matrix. Encase
2, it is ineutable that some of +hese cOlumns
are W'S-

case 28: with ren (rank deficient)

X G v |
nxq = |nxr o,
qxe o)
L n — )
q
X V = U
1’ 1‘1 n¥Xh

hK‘L



quin, we Jrof qddi-]-iond rows n V‘

because of rank dQ—Ciciehu,. And that =
will have h-r 2ero entriey along +he nxq
Aiag)onq\‘.

CASE 3 : When n=q,

case 34&: with rz(hzq) (full rank)

X 7 4 .

h s = Z
“‘li% : 1%q, Xn (hxn) =
(nxn) (4xq)

O A -

1 —J hxgq

"_J A N
NoH(e ih this @se that U:=TU AND [ =T

VISUALTIZ ATLoN :Xe ¥

fotement: , i a.
3“;?S€ e:\n K)S. Mﬂ?S +he wuni} Sf’lCrC in R 40 an

-
o w,

xeR*?

R~l
R



case 36: with r<(r\:1'\ (rank Jecicieh{-)

A A y
('ﬁ) s v = v l'%l‘
(gxy) = xr qxr o,
(nxn) 0
X V. . U s
nxy,. 9%4 n%Xh hxq

Section 2.4 : Eiggnvalut DecompoSition of XX

In a womend, you will understand why we
are interested in J{ind\‘ng the eigenvalye s anhd
eiqenvectors ot XTX. 7For nowy, consider +he

'FO“°W\'Y\3°‘

Because every n¥q  matrix X has an SVD,
XV:UZ .—_>)C=U2V"

and because V is unitary

=) X =V ZVT
which implies +hat XT: (U V)= VZTV°



Then,

= T T T
X'X =vZu'uzV

S T ! T

=7 XTX = UZVVZ ‘U’T &
X'x - vs'uuzVv’

S XXT-Uss"U"
X'X - vz zV'
5 XXTU-=U22°VU'U
XXV =V zZV Y, =V V-1

=~ XX'U =vUszZ’
X'XV : VZ'z

The refor €

xXx': Usz" U’
(nxq) (qxn) (nxn) (nxq) (gen) (nxn)
X' VsV’

(1xn) (hxg)  (3%) (qan (nxg) (4x1)

Okkx)



And  more over, becaure 557 and 372

Are 650\3 ona | (oma cow\mu\\{ WlVL V rCSpeCl-Nel.')
XX'™U :UzET

X'XV :VZ'z

. rop | ke
XXTU =22 U A’63=)\;Y;Jbu+

XXV sglgy |0 b

And we have that

@FOf' i=lygn 3-‘ are eigenvectors of XX e
R"" with eigenvaues 82 ..., @7,

@FOf ""a.--—J‘L ) \7'; are eige.nuec.'co;S of X'X ¢
RYY  with eigenvatues o ,.., 0%

Consequently, algorithms +that can obtain the

eiaerwalues (or esti mates of the ei envq\u€°>) of

will yield 4he singuiar Values “(or $he
%Cor?%qq\lfg\;d‘sq,uqre roo-};" of the eigenvalues)qg

well as +he yedors .

o9
Moreover, WL (anh obtain w
XV =0,u4; =Su =XV




HoWEVER 'Y
If qzn,
cank (X) £ min (n,q)
2 rank ('X.\ £ n
And because nuilspace (.XTX) S nullspace (X)
s rank (X' )C\ ¢ h

But X"X ¢ R¥™¥ . i} MUST have eigervalyes
equal o 0 (specifically, at least §-h of +hem).

WHICH MEANS THAT LT IS IULL-(oNDITIONED
TOR STANDARD EILGENVALVE ALGORITHMS

(SEE POINT #4 IN INTRO)

We Will j\lystrate in $he hext section how +his
relates Yo PcA ...



gection 3: How SUD Connects 4o PCA

PCA is & special case of S\D _wken the
columns are centered about their meahs.

Let X be any nxq matrix of data. It'S il{(t

cov (00 £ [ (x- B (x0T (X -€00))]
And the Sample covariance iS given by
Sx & L (x-R) (x-X)

I-F our AQ"‘CA \S (e'\'l‘efeA (YWOfQO\IQP, \‘F i'} ;g
standardized) g

(%) :o[3 ]

\V\Kq'\

wie, for 3=ty 9 we fix L Xy Z0

;. The Somple covariance matrx of o
centered matrix X (s given by

Sx = ch Xc

[
n-|




By (utxx\ Wwe khow that if the SVD of X, =
UzVv’ +hen

S - XX, V2V

c -
n-| n-t

And because

@ The loadings of the £C'S are the eigqenvectors

o(’. dne covariance matrx (or corielalFion matrix,

Qhéch; on Whether you centtred or cehtertd ¢
chle.d +he data)

= the \oadinys are given by [P ... \7‘1
(9%9) | b

Theh
@ The eigenvalues of Sx_are given by the matrix

T
= r.:-lz 2
3.1
where each )\] = ﬁ Qxfh'ms A% of +he \)Otriab;l'fy
wn X,
A'\J,
(® The PC sceres arve given b\,

Xpe = XV =UA

(nxq)y  ¥a) (DD (nxn) (nKq)
and more ofitn by
- C ~ A r r
12 ch = X \' = 'U'_A_ e "ark reduced form,
(nxry  (rxa) (30 (nxe) (¢ KrY

-



[Mo R€& oN THES IN 1HE NEXT SESTION)

And recall thatl in PCA

gif We use the covariance matriX, m o St ﬂlgoﬂ”""s
Pirst centtr +he data , then +he

WHEN WE SCALE THE DATA (cenkr iy AND
divide by Standard deviation)

ThQn st - Rxs

In other Werds, +he Correlation malsjy s equal fo
the covariance matiX WwWheh we Scale X. ThuS,
PCA proCeds in the Same Way.

The Genefal Procedur?:
STEP 4: Center (of scale) X
STEP &: Find the SUD of X (or Xs)
STEP 3:
% Loadings : AV)
*« Eisehiq\\»\es : N\ = ;.':, ZTZ
& PC Scores & X, - M - TN

Recall, -|-hq~|— (most 1§ no+ all) SVD algorithms £ind
the ©;'s +then obtain u through (1. ,.XCV'



Tn the next Setion, we will connect how &
condition # relates o cank de-?icn'enq ‘+hrough

Case 2 of X's J?MQV\S(Onah'h'.

wh he re ( -1 Loadihgs
Section 3.1 wh\’ena:{eﬂ:\r% T Nl Rt

When We “center” o dataser X, We Center it
about +he colymn means.

For g=1,-14
Ny . -3
*':3 n ,'2,. x"J.-\
Xceuftml, = .
) RIS "‘,‘..‘?;.x‘-i |

rank (Xe) ¢ min (0, q)

£

-

Recall the -Followin3 ,

when n7q (case L),
Dr- ro\nk(xc\ 4 mMin L“c‘D
= r ¢ ‘i,

@ In the SVD of Xe, when =9 (fqll rqhk))
VB



When ¢>n ( case II:S

D T = rank(X) £ min(nq)
= ren

®Inthe SUD of Xe, when F=N (full rank)
y= v o\r\AA 'V‘”‘L # Vexn - However, +he vectovs

Vi inside Vo n in the full rank case haye al|
hohgzero Rigenvalues

CLAIM: Data that is centered around +the
mean Yields Oht (oW +that is linearly dependent .
n other words,

fkwhen n7gq  centered dada X.'S rank is no4
effected by this

A Wwhen qzn t+the watrix X s fank deficient

)

Simultaneously,

(© Agorithms struggle o Find eigenvaines and
eiqenvectors when Xec is rank eficient

@ these algorithms yhat o ften work oy finding
Viwey and don't look for th ... (the complete
SV0)

(® braham-Schmidt is useful in Fim‘ihhg Jhe
9-n extra Of\-hosonq\ vectors, but +he rank

de—{ciehcy ihevitably makes it more (.hqllehs.'\nj
for them $o Lind +he last vector in V



(@) If +he Mqorithm wWorks by “picking off"
olumhs, “Sometimes the —r\l-T doesm~ wWork for
bhis last cas€ as wel|

A Side (\o&e is that some P¢ o\\¢30ri-}hmg alsd
use = inStead of o as the cefficient in S
This yie,lds o Mot conseNative €s}imale of Variahces.
This is not a Standard, but Some (usually older) p¢
gunctions do  +his os a Way to counteract

Really, mathemaliciahs Care wore about fthis
‘han Statisticians. If You are interested in how

the U, G, V,‘(r, Z2,and S matrices are obtained,
there are mahy resource$S only that explain
popular alqorithms (and their' @Spective ompuiations
com|lexities, |ike FlLoPs). For stakisticians, however,

who WOrK with py to. computational  omplex)
cn beome very |pmdro1-\-an+ '{-o +heir  woik andhl

cah be WUseful khbW\deQ when analyting data
oY ?!ob\em- Solving-

THE BIG TAKEAWAY :

The big Takeaway js (o4 there are ALWAYS n rows
ina pC Score (Whether wyq ,q2n, or there is rank
deficiency).

However, for dljor ithms that geeroximate the yectois
in the SN P, rhere ore o ff'? loading s andv"

PC scote Vectors. Therefore when roank ¢ i Y
will diffec from  the row count when 12":"*) (rr9),

Onyour own , you can 1y %2 Show Ltpot o row
o linearly dependent When the makrix |3 contered
abowt column meanS... buy  that (onclydes this

rSSoHN!



