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SINGULARVALVE DECOMPOSITIONS
ÉTÉILLII EIGENVALUE DECOMPOSITIONS AND ÉÉÉÉy

iTHEIR RELATIONSHIP TO PCA

SUMMARY
Across different branchesof omic studies principal componentanalysis is a common technique used in both qualitycontroland exploratory data analysis to study features of omic datarelative to samples and phenotypes Because omic datasetsare large and often substantiallyin differ row and columndimensionsinterestingmathematics must beexploitedbyPia algorithmsFurther many popularPCAalgorithms producedifferentoutputs for
estimates of loadings PCscores andeigenvalues

Here weprovidesomemathematical framework that connects the ion
cepts of PCA and SVD Thisdocument whileprimarily a mathematicaltext caters to individuals with a math or a stats background at
an advancedundergraduateto graduatelevel
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section 1 some Housekeeping Introductions and a

Brief overview of what we will learn in these notes

1 Principal component analysis PLA is centralized
around a special case of a singular value decomposition
SVD of a matrix E nxq Simply put an SUD of a matrix
is just a way to write a matrix in terms of several
other matrices one reason that we are interested in
finding the SUD of a matrix is that an SVD can reveal

qualitative information about this matrix SVD's are

also important in the field of numeriial linear algebra
as they can be exploited to change the computational
complexity of certain algorithms

2 Suppose you have a matrix full of data we will
call this matrix I

q variables
columns

it

we can observe the following three cases for dimension
of II

n of throws h 101st
I use here
to mean much

q n I n cols n rows
larger than

n q throws neots

In omic datasets land in big data i general it
stommon to work in cases where nzq or gym














































































































in other words the dimensions greately differ

turther
In PCA our data matrix I is viewed as a real
valued matrix instead of random variables Here
I will note that we are using Inxq the stats
matrix notation convention instead of Anxm the
math matrix notation convention This means tha
when we talk about independence and dependence
of the rows and columns of Inxq throughout this
document we are referring to linear independence
and linear dependence not probablistic independence
dependence

3 In PCA the eigenvalues and eigenvectors of
are of keen interest to us Moreover eigenvalue

and eigenvectors are essential to the analysis of
linear transformations coming from the German

word eigen meaning characteristic eigenvalues
and eigenvector tonne we extract them using some

mathematical or computational technique tell us

things about the characteristics of the matrix

4 When you use eigenvalue calculators for various
functions to do PCA like prompt l and Plac in

R you might not always get exactly the same

answers or approximations While we won't focus

directly on the algorithms and processes used to
generate eigenvalues or eigenvectors it isimportantnote that not all matrices work well or are
compatible with every algorithm














































































































For most matrices especially non square ones it
s hard computationally complex to find eigenvalues
and eigenvectors even with a great set of

algorithms If you are interested there is a concept

n numerical linear algebra called the condition
number which is the ratio of the largest to
smallest eigenvalue when the smallest eigenvalue of
a matrix is equal to zero the condition number is

infinity standard eigenvalue solvers are ill ionditioned
and unreliable Iterative methods to approximate
these values are fantastic these days but can
still fail when you have one or many zero or

nearly zero eigenvalues

section 2 singular value Decomposition SVD

we will introduce this fact about the geometric
interpretation of a matrix and let it sit for
a minute as it might be new to some folks

FACT Any nxq matrix I transforms the unit
circle in Rot into an ellipsoid in R

If Rnxq

if ER

Titball
in Ra deform edunit

ball into ellipse
under action of I














































































































This is one way to conceptualize what a matrix is

o further illuminate what this means in an

igebraic way rather than geometric we will
be considering the following three cases in these notes

case 1 when n q
case 2 when q n

case 3 when n q
But first we will review some linear algebra
section 2.1 Linear Algebra Review

A loose definition of linear dependence If you can

express two columns for rows j and K in a matrix
I like so

HittiXn j

scalar th columnjtholumn

jth lolumn is tin dep with Kth column

Now recall the concept of rank

rank E dim span
columns of

dim span rots
of














































































































where the dimension of the span of the
1014 Mhs is the maximal number of linearly
independent columns of I

THM I will not prove this here but you can

find proofs of this in books or online

column rank I row rank E

thinking back to linear algebra remember

performing row reduction on a matrix where n q
and or that had linearly dependent rows or columns
and you end up getting zero vectors when in

reduced row echelon form this is a time where
you may or may not have discussed this idea For our

purposes just hold onto this idea

DEF An nxq matrix I is said to have full rank
if its rank equals the largest possible rank for

a matrix of nxq
Recall that rank II Emin n q this is true for
any matrix Enxql
A matrix I is full rank when

rank I min n q x

DEF A nxq matrix is said to be rank

deficient if rank E c min in.gl














































































































section 2.2 Back to SVD

If Rnxq

i ER

yn
in Ra deform edunit

ball into ellipse
under action of I

IERMINQLOEI DEFINITIONS

DEF The principal axes of the ellipsoid are denoted by up

and can be orderedby their lengths which are denoted by 0

tef ri s n 0ix In total there are n principal

In otherwords we labeleach principal axis by theirorderedlengths

DEF the preimages of each ni are denoted by F In toto
there are g preimages

THEORUM
I will It prove this here but it has been shown

THM The printipal axes it In and the pre images
E Fg are orthonormal

Length I by definition andthey all
meet at right angles














































































































TO UNDERSTAND WHAT THIS MEANS WE WILL
FIRST GEOMETRICALLY SHOW THE THREE
POSSIBILITIES
For the sake of this illustration we are going toassume all of thy vows columns of are linearlyindependent

CASE 1 when n of
Ex

I
er

statement I maps the unit circle in R2 to an
ellipse in R

a pyre Is a M3

i
L t af p

UNIT SIR ILE
in R2 AN ELLIPSE THAT

IS ONLY 2D THAT
EXISTS IN R

In case I there is a third priniipal axis
I tin green that is orthormat to the other
2 vectors it and up However O iconstant 0

Therefore the third principal axis u is stiff led

by03 0 into the zero vector














































































































CASE 2 when yn
Ex Y Y Y er

statement I maps the unit sphere in R to an
ellipse in R2

g affaires of n
Max ER

B Iorit
i hey u

UNIT SPHERE
IN R

N SPACE

In this case where we are mappingfrom a higher to a lower dimension
our vector V3 maps to the hull spaceand our matrix I takes us from
3D to 2D














































































































CASE 3 when n q

EX I Y'sY e R longer side
of ellipse O is

lit is labeled

n o.IT engn
II
than

É É n u

R2
R2

This case is more straightforward
again for this illustration we assumed
all of our vectors in I were linearly
independent Dependence just tacks on additionalvector mapping to null space in And case

Note there are many ways tounderstand what amatrix is this idea is one of them la mapping
of unit ball in Ra to ellipsoid in Ahl This way is thekeyway to understanding the math of SUDS














































































































section 2.3 The Core Idea of SVD

We're going to pose some definitions for matrices

Let r rank E where e R E

By stacking the vectors v and u into the
columns of matrices f and O

It holds that

F EE IN

Fatal Taxi Carl

we call x the reduced singular value

decomposition of X

NOW WE WILL DEFINE THE FOLLOWING
CONCEPT

DEF the real matrices J and V are said to be

unitary if

U ft

v.v JEFF EE

The definition of unitary is slightly different when
WY have

complex s involved but in our statistical works this doesn't
matter














































































































KEY IDEA

The full SVD is obtained by completing
E and F into unitary matrices J and F

and padding E with O's if he lessary

F EE HA
qYxq TxnTxq

To understand what we mean by this we need to
consider the three cases above And we need
to understand 2 ideas of what's going on

some of the vectors in J E and I must
be turned into zero vectors depending on the
case and rank

Algorithms like the Graham Schmidt process't
must be used to obtain vectors orthonormal to
the other vectors inside It and E or F and E
respectively depending on the case and rank

we will illustrate this in the next section

Algebrailally land computationally this form of the
sup is more appealing because I and I are square
Note If you are not familiar with Graham Schmidt
prolesses it is basilally just a way to producevectors orthogonal to each other

















































































































section 2.4 the core Idea of SVD IExpanded

Recall from the diagrams regardless of of f dimensions
we always have q preimages and n principal axes

Most sub algorithms focus on obtaining it and then
moreover the obtain It through

I F O E Fi III
beloware inspiredbythe article How are priniip

Iggy.ggynEgnaEysNistsaindthesseingnu9ta1
fattenedcompositionrelated byAndrePerunicic at the

CASE I When n q

case IA with req full rank

É
qxq E

nxq nxq
qxq

T O E
nxq

nxn nxq

First notice that t t when u q ie there are
no linearly dependent columns

https://intoli.com/blog/pca-and-svd/


























































second notice that this right away means that if
our algorithm can find us t it ran find us J

third look at x

This blue rectangle in the complete matrix I contains
additional vectors that are orthogonal to theestors in
t These vectors ian be obtained through a method
like the Graham Schmidt process

For computational purposes sometimes algorithms
require that these I ve tors in it and not f mus
be obtained it is desirable because it is square
Generally behind the scenes we might care
about all of t

VISUALIZATION e RNZ
statement I maps the unit circle in R to an
ellipse in R

a gyri'd taxa n R

i i
a planein R

I Yo
UNIT SIR ILE AN ELLIPSE THATin R2 IS ONLY 2D THAT

EXISTS IN R



ease IB with req rank deficient

n I É
I ran q

mr

nxq
3mg

T Inn E
nxq qxq nxq

In the É matrix redules to rxr from qxqthis means we have q r di's that are 0

when req in t we don't have several
columns due to linear dependency

CASE 2 when q n

case 2A with ren full rank

MY
É É

nxq nxn nxn

qxn

vectors



nxq
t I

qqxq.NL
F E

First notice that when u n lie there are
no linearly dependent columns HOWEVER If an

algorithm must start with a complete t and not a
complete t lie it can't find ve tour in xx that
are orthonormal to vectors in It then it will fail
vectors in xx are not of interest to statisticians
but they are computationally necessary at times

VISUALIZATION e R

statement I maps the unit sphere in R to an
ellipse in R2

RIP
e

F R2
O n f p
Ionet.EE

L

y u

UNIT SPHERE
IN R

N SPACE



Looking at the blue rectangle in t Korresponding
o the columns in F we can see how some

columns are forced into the null space Note
here that vectors in the hull space mapped to
he zero vector la talk of that dimension they
are not equate the zero vector after being
multiplied by some constant

Like in case 1 those F s are orthonormal to
the other Fi's outside of the null space after
this linear transformation we are simply not
interested in them although they might be
used in algorithms and behind the scenes of our
work
we can also see this in the Enxq matrix In case
2 it is inevitable that some of these columns
are E's

case 2B with ran trank defilient

Er
nx É É

her

in

E V E
nxq qxq

I

nxn
q



Again we drop additional rows in f
bemuse of rank deficiency And that Engwill have h r zero entries along the
diagonal

CASE 3 when n q

case 3A with r th ql full rank

qxq
fin

111 inxnl
qxql

tynxq In Eq
motile in this case that E E AND F f

VISUALIZATION e R
2

statement I maps the unit sphere in R to an
ellipse in R2

r O E

E Y man

R2
R2



case 3B with rith ql rank deficient

it É Iro

Exa I Exn Eq

section 2.4 Eigenvalue Decomposition of TI

In a moment you will understand why we

are interested in finding the eigenvalues and
eigenvectors of IT For now consider the
following

Because every nxq matrix I has an SVD

I TT JE I JETT

and because it is unitary
I JETT

which implies that It fu Etf te JE tut



Then

II t JEE V E Tft

It I VETETO E T

II t JE T VE Tft

It I JET E JE t

II t JE E
t ft

II JET E ft

II TO U E ETF to

I t yet pig
t t I

Y'T I

II to O E Et

It U FETE

therefore

thxq1 axn nxn axa qxnl nan

s I TETE Tt



And more over because EET and TE
are diagonal land roommate w te f respectively

T
IX TO FEET

If yet
This is a property of

diagonal matrices

like AB BA

IX TO qty
like

It ta y
Ari titi but
in matrix form

And we have that

For i t in Ii are eigenvectors of I te
Rn with eigenvalues 0,2 03

For i l 9 Fi are eigenvectors of ITI e

R9 9 with eigenvalues 0,2 02g

consequently algorithms that can obtain the
eigenvalues lov estimates of the eigenvalues of

I will yield the singular values or the
nonnegative square roots of the eigenvalues as

well as the vectors fi

Moreover we ran obtain it through
I E O Fi Fi III



HOWEVER
If qzn

will notprove this here
rank x Eminem on

this
era

not sure about complex
rank I e n

valued matriies

And because nullspace ITI E nullspare E

rank ITI en

But It X f R9 9 it Must have eigenvalues
equal to 0 specifically at least q h of them

WHICH MEANS THAT IT IS ILL CONDITIONED
OR STANDARD EIGENVALUE ALGORITHMS

ISEE POINT 4 IN INTRO

We will illustrate in the next section how this
relates to PCA



section 3 HOW SUD Connects to PLA

PCA is a special case of SVD when the
columns are centered about their means

Let I be any nxq matrix of data It's qxq
covariant matrix is given by
lov II ELI El 1 E E 11

And the sample covariance is given by
S It I I ITI E

If our data is centered moreover if it is
standardized

E E info o
Fxql

ie for j l q we fix I I Xi Iet O
this is a column

me in

the sample covariance matrix of a

centered matrix I is given by

S Ict c

n t



By xxx we know that if the SVD of I
JETT then

Sy at e TETE ft
h i n t

And because

The loadings of the PC's are the eigenvectors
of the covariance matrix or correlation matrix
depending on whether you centered or centered I
stated the datal

The loadings are given by I I1991
then

The eigenvalues of Sa are given by the matrix

A I ETE sometimes written as ft
where each t EI explains tito of the variability
in c

And

The PC scores are given by
Ipc t

inxq lqxq
t 1

tnx qt thxhl Inxq

and more often by

A Ipc I t If rank reduced form

in xp thigh 19 4 thxrt fr Xr



MORE ON THIS IN THE NEXT SEITION

nd recall that in PCA
if we use the covariance matrix most algorithms
first center the data then the

WHEN WE SCALE THE DATA Center it And
divide by standard deviation

Then S
s Rx

In other words the correlation matrix is equal to
the covariance matrix when we scale I Thus
PCA proceeds in the same way

The General Procedure

STEP 1 center for scale I

STEP 2 Find the SVD of Ic or s

STEP 3

Loadings I

Eigenvalues I I ETE
PC scores Ipc It Of

Recall that most if not all SUD algorithms find
the Pi's then obtain É through Ii



In the next section we will connect how a

condition relates to rank deficiency through
case 2 of I's dimensionality

sections why are there only h 1 Loadings
when 977h

When we enter a dataset I we center it
about the column means

For j l q

j I is

in mnxni.tn
xi

in X
rank I c Emin n E

Recall the following

when n q ease Il
r rank d e min In.gl

v e g
In the sub of Ic when r g full rank
FF



When q n lease II
r rank i s min In.gl

ran

In the sub of Ic when r n full rank
t t and tax fan However the vectors
F inside fun in the full rank case have all
nonzero eigenvalues

CLAIM Data that is centered around the
mean yields one vote that is linearly dependent
In other words

when n q centered data I s rank is not
effected by this
when qzn the matrix I is rank deficient

simultaneously
Algorithms struggle to find eigenvalues and
eigenvectors when I is rank deficient

These algorithms that often work by finding
Fay and don't look for Jqxq the complete
SVD
Graham Schmidt is useful in finding the
q n extra orthogonal vectors but the rank

deficiency inevitably makes it more challenging
for them to find the last vector in t



If the algorithm works by picking off
columns sometimes the doesn't work for
this last case as well

A side note is that some Pe algorithms also
use at instead of f as the coefficient in S
This yields a more conservative estimate of variance
this is not a standard but some usually older PC
functions do this as a way to counteract

Really mathematicians care more about this
than statisticians If you are interested in how
thy T E V T E and I matrices are obtained
there are many resources only that explain
popular algorithms and their respective computation
complexities like Flops For statisticians however
who work with big data computational complexity
can become very important to their work and
can be useful knowledge when analyzing data
or problem solving

HE BIG TAKEAWAY
he big takeaway is that there are ALWAYS n rows
in a p s score whether n q q 2h or there is rank
deficiency
towever for algorithms that approximate the ve tous
n the SVD there are only r loadings and r
pc score victors Therefore when rank a min n q r
will differ from the vow count when qzn
on your own you can try to show that a row
is linearly dependent when the matrix is centered
about column means but that loneluder this
lesson


